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Acoustic quasimodes in two-dimensional dispersed random media
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Using the generalized coherent-potential-approximation approach, we present the dispersion relation of the
two-dimensional dispersed random media. In the intermediate-frequency regime, two acoustic modes are found
in colloidal suspensions including cylindrical plastic rod in water background. The scattering cross section
offers a good explanation for the two modes and the observed frequency gaps in the excitation spectra.
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I. INTRODUCTION

In recent years, there has been growing interest in classi-
cal wave propagation and scattering in composite media
�1–18�. For periodic media, it is concerned with the band gap
in the dispersion relations of photonic or phononic crystals
�2–8�. For the random media, the dispersion relation also
provides rich physics �9–18�. If the wavelength is compa-
rable to the scale of random inhomogeneities, the character
of the wave propagation is generally expected to change
drastically due to the strong multiple scattering.

It is conventional wisdom that an isotropic, homogeneous,
elastic solid has one longitudinal and two transverse modes,
and a fluid has only one longitudinal acoustic mode. For the
fluid-saturated porous media, where the solid and the fluid
phase form a connected network, experiments have con-
firmed Biot’s prediction that it exists as two longitudinal
modes in addition to the two shear modes, where the fast
longitudinal mode travels predominantly in the solid frame
and the slow one travels mainly in the fluid �9�. For the
colloidal suspensions, consisting of monodisperse PMMA
spheres with a certain size dispersed in oil, both experiment
and theoretical calculations show that in the intermediate-
frequency regime, there exist two distinct longitudinal modes
with finite lifetimes �11–13�. The existence of a propagating
mode put forward a challenge to the conventional under-
standing that only diffusive transport exists in the strong-
scattering regime.

In this paper, we develop a generalized coherent-
potential-approximation �GCPA� approach for the identifica-
tion of quasimodes in two-dimensional dispersion random
media consisting of random parallel solid rods immersed in
fluid. The dispersion relations of three kinds of systems are
discussed. In the intermediate-frequency regime where the
wavelength is comparable to the scale of the inhomogene-
ities, significant phenomena are found. Two acoustic modes
are surprisingly found in colloidal suspensions including a
cylindrical plastic rod in water background, which arises
from the coherent coupling of resonances on neighboring
particles. Furthermore, calculated results of the cross section
provide us with an excellent prototype for further under-
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standing the physical origin of the two acoustic modes in the
plastic-water system and the observed frequency gaps in the
dispersion relations. In order to make this more clear, the
details of the generalized GCPA approach theory are outlined
in Sec. II. Section III presents the results and discussion and
Sec. IV summarizes this paper.

II. METHOD

The two-dimensional dispersed random system studied is
characterized by the dispersion microgeometry where each
solid cylinder is individually enveloped by the fluid but all
the cylinders are aligned parallel to one another. We discuss
the waves propagating in the two-dimensional plane that are
vertical to the cylinders’ axis. The configuration of the sys-
tem is illustrated in Fig. 1.

To calculate the effective macroscopic properties of the
system, we employ the effective medium model �1�, which is
schematically depicted in Fig. 2. The coated cylinder is em-
bedded in a homogenized effective medium composed of
similar units of coated cylinders, with the effective-medium
speed of the medium to be determined by some self-
consistent condition. In the coherent-potential approximation
�CPA�, such a condition is achieved by requiring the vanish-
ing of the forward-scattering amplitude f�0� through the ad-
justment of the effective-medium wave speed Ce. The con-
dition is noted to be self-consistent in the following sense: If
we let G denote the exact Green’s function for an acoustic
wave in the random system, then

FIG. 1. The configuration of the system consisting of parallel

solid rods randomly immersed in fluid.
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G = Ge + GeTGe,

where Ge is the Green’s function for the homogeneous effec-
tive medium and T denotes the exact total scattering operator
including all the multiple scattering between particles. By
expressing

Ge =
1

p2 − q2 , �1�

where q=� /Ce, Ce is the effective-medium wave speed and
p is the Fourier-transform variable, the CPA condition for
Eq. �1� is �T�=0 through the adjustment of q, where the
angular brackets denote configuration average. When that
happens, �G�=Ge and q is identified as the wave vector of
the excitation. Since �T�=nt in the weak-scattering limit,
where t is the single-coated-cylinder forward-scattering am-
plitude and n the cylinder density, f�0�=Tqq=0 is therefore
the condition for determining q. �T�=0 is equivalent to t=0,
which means the CPA condition is consistent with requiring
the forward scattering.

For the generalized CPA condition, instead of requiring
�T�=0, we look for minima of �T�. The fact that the scatter-
ing now does not vanish on average means that the excitation
must be a quasimode. However, since at minima the scatter-
ing may still be weak, we may approximate �G� by

�G� �
1

p2 − q2 − �

where the self-energy ���T��nt to the first order in scat-
tering strength, The minima of �T� may thus be identified by
the maxima of density of state �SD�,

SD�q,�� = −
1

�
Im�G� ,

which is evaluated with the condition of elastic scattering
�p=q�, so that

FIG. 2. The effective medium model. The coated cylinder is
embedded in a homogenized effective medium composed of similar
units of coated cylinders.
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�G� � −
1

nt
.

The maxima of SD correspond directly to the minima in scat-
tering, which give the best condition for the existence of a
quasimode since less scattering means the wave can coher-
ently propagate over a longer distance. In the following sec-
tions we give details and justifications for the results stated
in this section.

III. RESULTS AND DISCUSSIONS

We first consider the composite systems consisting of par-
allel glass cylinders dispersed randomly in the water back-
ground and parallel Fe cylinders dispersed randomly in the
water background. In Figs. 3�a� and 3�b�, we plot, in color,

FIG. 3. �Color online� The SD plotted as a function of the nor-
malized frequency �d /c1 and wave vector qd, where c1 is the lon-
gitudinal velocity for the fluid background. The magnitude is indi-
cated by the colors, with the scale bar showing the values from low
to high corresponding to the colors. The dispersion falls below the
dispersion curve for pure water �dashed white line�. The volume
fraction of the cylinders is 0.5. �a� Glass cylinders in water and �b�
Fe cylinders in water.
the calculated SD as a function of the dimensionless fre-
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quency �d /c1 and dimensionless wave vector qd for the
solid cylinder’s volume fraction �=0.5 for these two sys-
tems, respectively. The volume fraction � determines the
liquid-coating thickness used in the calculation. The material
parameters are chosen as follows: �=7.8 g/cm3, C1
=5.7 km/s, and Ct=3.0 km/s for Fe; �=2.6 g/cm3, C1
=5.6 km/s, and Ct=3.4 km/s for glass; �=1.0 g/cm3 and
C1=1.5 km/s for water; where �, C1, and Ct are, respec-
tively, the density, the longitudinal, and the transverse sound
velocity. Significant dispersions are observed. There is only
one acoustic mode indicated by the outstanding colors. The
dispersion curve, defined by the peaks, is accurately deter-
mined because the widths of the peaks are substantially less
than their central frequencies. It should be stressed that the

FIG. 4. �Color online� The SD for plastic cylinders in water. The
volume fraction of the cylinders is 0.5. The two dashed white lines
indicate the dispersion curve for the compressional wave in the pure
liquid phase �water� and for the longitudinal wave in the solid phase
�plastic�, respectively.
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calculation has no adjustable parameter. Remarkably, for
most of the frequency we considered both velocities are sub-
stantially less than the speed of sound in either the longitu-
dinal velocity in water or the longitudinal or transverse ve-
locity in the glass.

In Fig. 4, we plot the SD for parallel plastic cylinders
dispersed randomly in the water background with the volume
fraction of the cylinders 0.5. The material parameters are
chosen as �=1.0 g/cm3, C1=2.7 km/s, and Ct=1.1 km/s for
plastic. Two bands of ridges are clearly seen in green. It
should be noted that the value of qd extends from much
smaller than 1 to 10, i.e., the wavelength of the acoustic
excitations extends continuously from being very much
larger than the cylinder diameter to being much smaller that
that scale. The two observed modes are quasimodes with a
limited lifetime. We see one dispersion relation exists be-
tween the plastic dispersion relation and the water dispersion
relation, which are marked by white dashed lines. That
means the high-frequency mode has an intermediate velocity
between those of the plastic and water. These tendencies are
in accord with general intuition. While not shown, our cal-
culations also indicate that at high q high-frequency mode
tends to converge to the fluid dispersion relation. �Moreover,
small gaps are found in the dispersion relation relative to the
high-frequency mode.� The other dispersion relation for the
low-frequency mode is seen to fall below that of the liquid
background. In the low frequency regime, the velocities of
the low-frequency mode are less than the speed of sound in
the longitudinal velocity in water. Lots of the numerical re-
sults for the solid-fluid system show that when the density of
the cylinder is comparable to the density of fluid, and the
longitudinal sound velocity of the cylinder is a little larger
than that of fluid, there exist two quasimodes.

In Fig. 5, we plot the SD for plastic cylinders immersed in
water with different volume fractions of the cylinders �. We
can see that as the volume fractions � increase, the velocity

FIG. 5. �Color online� The SD

for plastic cylinders in water. The
volume fraction of the plastic cyl-
inder �, �a� 0.4, �b� 0.6, and �c�
0.8.
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for the high-frequency mode increases, while the low-
frequency mode slows down, which is just the opposite to
the trend of the high-frequency modes. At low volume, the
two dispersion relations will merge and become indistin-
guishable from the fluid dispersion.

Furthermore, we demonstrate the behaviors of the scatter-
ing cross section in Fig. 6. It is the key to understanding the
physical origin of the two modes. Scattering cross sections
are renormalized in units of �d. Comparing the scattering

FIG. 6. The renormalized scattering cross section plotted as a
function of frequency �d /c1. �a� A Fe cylinder and a glass cylinder,
respectively, are immersed in water. �b� A plastic cylinder is im-
mersed in water.
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cross section of a single Fe cylinder or a single glass cylinder
immersed in water �Fig. 6�a�� with that of a single plastic
cylinder immersed in water �Fig. 6�b��, we can see that in the
regime of renormalized frequency from 1 to 10, there are
many peaks in the scattering cross section for the plastic-
water system, which means the strong resonance scattering
of single cylinder. It results in the resonance on neighboring
cylinders coupling through their decaying portions in the liq-
uid, causing a splitting of each peak into two, with a mini-
mum in between. It is this minimum that is picked up as the
peak in the SD, which corresponds to the low-frequency
mode. The frequency positions of the peaks in the scattering
cross section for a single plastic cylinder immersed in the
water background are found to correspond directly to the
gaps in the dispersion relation of the high-frequency mode.
This correspondence suggests that the high-frequency mode
results from the antiresonance of a single cylinder, where the
scattering is minimum. Above all, the existence of two dif-
ferent modes depends on the single cylinder’s strong reso-
nance scattering.

IV. CONCLUSIONS

In conclusion, we investigate acoustic wave propagating
in two-dimensional dispersion disorder media consisting of
random parallel solid rods immersed in water. By using the
GCPA approach based on the principle of locating the
minima of �T�, the quasimodes and dispersion relations of
the Fe-water system, glass-water system, and plastic-water
system are investigated. The results of our study surprisingly
show significant phenomena of wave transport in the
intermediate-frequency regime where the wavelength is com-
parable to the scale of the inhomogeneities. Two acoustic
quasimodes exist in plastic-water systems, which is contrary
to the conventional view that only diffusive transport exists
in the strong scattering regime. Their characteristics are
shown to vary with the concentration of the solid cylinders.
A cross section of these kinds of systems offers a good ex-
planation for the two modes and the observed frequency gaps
in the excitation spectra.
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